INTEGRAL
Bila diberikan suatu fungsi f dari variabel real x dengan interval [a, b] dari sebuah garis lurus, maka integral tertentu
didefinisikan sebagai area yang dibatasi oleh kurva f, sumbu-x, sumbu-y dan garis vertikal x = a dan x = b, dengan area yang berada di atas sumbu-x bernilai positif dan area di bawah sumbu-x bernilai negatif.
Kata integral juga dapat digunakan untuk merujuk pada antiturunan, sebuah fungsi F yang turunannya adalah fungsi f. Pada kasus ini, maka disebut sebagai integral tak tentu dan notasinya ditulis sebagai:
Prinsip-prinsip dan teknik integrasi dikembangkan terpisah oleh Isaac Newton dan Gottfried Leibniz pada akhir abad ke-17. Melalui teorema fundamental kalkulus yang mereka kembangkan masing-masing, integral terhubung dengan diferensial: jika f adalah fungsi kontinu yang terdefinisi pada sebuah interval tertutup [a, b], maka, jika antiturunan F dari f diketahui, maka integral tertentu dari f pada interval tersebut dapat didefinisikan sebagai:
Integral dan diferensial menjadi peranan penting dalam kalkulus, dengan berbagai macam aplikasi pada sains dan teknik.
RULE 1
“n” sebagai pangkat dari x , dimana n tidak boleh bernilai -1. Karena nantinya pembaginya -1 + 1 = 0, Bilangan berapa pun jika dibagi 0 hasilnya tak terdefinisi/ tak hingga.
RULE 2
Integral Exponensial adalah fungsi yang dinotasikan dalam bentuk e pangkat x.
Contoh soal:
RULE 3
RULE 4
Contoh soal:
RULE 5
Contoh soal:
RULE 6
Teknik perhitungan integral pada rule ini:
1. Memilih fungsi u : g(x) sehingga ∫f (g(x)) g'(x) dx dapat diubah menjadi ∫f (u) du.
2. Tentukan fungsi integral umum = f (u) yang bersifat f’ (du) : f (u).
1. Memilih fungsi u : g(x) sehingga ∫f (g(x)) g'(x) dx dapat diubah menjadi ∫f (u) du.
2. Tentukan fungsi integral umum = f (u) yang bersifat f’ (du) : f (u).
Contoh soal:
RULE 7
RULE 8
7. ∫ cot x cosec x dx = -cosec x + c
Sifat-sifat :
Contoh soal:
Comments
Post a Comment