BARIS DAN DERET
Baris Aritmatika
Baris aritmatika merupakan baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan b. Selisih antara nilai suku-suku yang berdekatan selalu sama yaitu b. Sehingga:
b = (9 – 7) = (7 – 5) = (5 – 3) = (3 – 1) = 2
Untuk mengetahui nilai suku ke-n dari suatu barisan aritmatika dapat
diketahui dengan mengetahui nilai suku ke-k dan selisih antar suku yang
berdekatan (b). rumusannya berikut ini:Deret Aritmatika
Deret aritmatika adalah penjumlahan suku-suku dari suatu barisan aritmatika. Penjumlahan dari suku-suku petama sampai suku ke-n barisan aritmatika dapat dihitung sebagai:Sisipan
Jika hendak membuat sebuah baris aritmatika dengan telah diketahui nilai suku pertama (a) dan suku terakhirnya (p), dapat disisipkan sejumlah bilangan diantara keduan bilangan tersebut. Sejumlah bilangan (q buah) tersebut menjadi suku-suku baris aritmatika dan memiliki selisih antar suku beredekatan (b). Baris aritmatika tersebut memiliki jumah suku q + 2 dan diurut berupa:
a, (a + b), (a + 2b), (a + 3b), …, (a + q.b), (a + (q+1)b)
Diketahui bahwa suku terakhir:
(a + (q+1)b) = p
Maka, nilai b dapat ditentukan sebagai:- Nilai q = 3
- Jumlah suku = q + 2 = 3 + 2 = 5
- Baris aritmatika : 1, 3, 5, 7, 9
Suku Tengah
Jika barisan aritmatika memiliki jumlah suku ganjil, maka memiliki suku tengah. Suku tengah baris aritmatika adalah suku ke-Barisan Geometri
Baris geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan r. Perbandinganatau rasio antara nilai suku dengan nilai suku sebelumnya yang berdekatan selalu sama yaitu r. Sehingga:Deret Geometri
Deret geometri adalah penjumlahan suku-suku dari suatu barisan geometri. Penjumlahan dari suku suku petama sampai suku ke-n barisan geometri dapat dihitung sebagai:Atau:
Persamaan tersebut bisa dibalik untuk mencari nilai suku ke-n. Cara memperolehnya sama dengan deret aritmatika yaitu:
Sisipan
Jika hendak membuat sebuah baris geometri dengan telah diketahui nilai suku pertama (a) dan suku terakhirnya (p), dapat disisipkan sejumlah bilangan diantara keduan bilangan tersebut. Sejumlah bilangan (q buah) tersebut menjadi suku-suku baris geometri dan memiliki rasio antar suku beredekatan (r). Baris tersebut memiliki banyak suku q + 2 dan diurutkan menjadi:
a, ar, ar2, ar3, …,arq, ar(q+1)
Dimana suku terakhir tersebut:
ar(q+1) = p
Sehingganilai r dapat ditentukan sebagai:Deret Geometri Tak hingga
Suatu deret geometri dapat menjumlakan suku-sukunya sampai menuju tak hingga. Apabila deret geometri menuju tak hingga dimanaDan:
Kemudian hasil limit
Dan:
Contoh Soal Barisan dan Deret Aritmatika/Geometri dan Pembahasan
1. Contoh Soal Deret Aritmatika
Suatu deret aritmatika memiliki suku ke-5 sama dengan 42, dan suku ke-8 sama dengan 15. Jumlah 12 suku pertama deret tersebut adalah?Pembahasan:
- Diketahui bahwa
,
, maka dapat digunakan rumus :
- Dimana:
- Sehingga:
- Diperoleh:
2. Contoh Soal Deret Geometri
Jika jumlah 2 suku pertama deret geometri adalah 6 dan jumlah 4 suku pertama adalah 54. Memiliki rasio positif. Maka tentukan jumlah 6 suku pertama deret tersebut!Pembahasan:
- Diketahui bahwa:
- Jika kedua persamaan disubstitusikan :
- Sehingga :
3. Contoh Soal Geometri Tak Hingga
Jika(SPMB 2005)
Pembahasan 3:
- Diketahui bahwa:
- Ditentukan ratio deretnya adalah:
- Maka jumlah deretnya dengan mensubstitusi
adalah:
Comments
Post a Comment